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Entropy production for a system outside the thermodynamic limit is formulated using Hill’s nanothermody-
namics, in which a macroscopic ensemble of such systems is considered. The external influence of the envi-
ronment on the average nanosystem is connected to irreversible work with an explicit formula based on the
Jarzynski equality. The entropy production retains its usual form as a sum of products of fluxes and forces and
Onsager’s symmetry principle is proven to hold for the average nanosystem, if it is assumed to be valid for the
macroscopic ensemble, by two methods. The first one provides expressions that relate the coefficients of the
two systems. The second gives a general condition for a system under an external force to preserve Onsager’s
symmetry.
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Nonequilibrium thermodynamics tries to understand mac-
roscopic systems out of equilibrium, and particularly those in
steady states, without having to resort to the �unattainable�
dynamic description of all their microscopic degrees of free-
dom, using instead the same few macroscopic variables as in
the thermostatic case but allowing for situations where they
depend on time. Interest in this field can be traced back to the
works of Boltzmann on Thomson’s hypothesis about the di-
vision of a general process into a reversible and an irrevers-
ible part �1�. However, it was not until 1931 that a truly
systematic derivation of the thermodynamics of irreversible
processes near equilibrium was attained by Onsager �2,3�
and later refined by Casimir �4�.

Entropy production is perhaps the most important concept
in nonequilibrium thermodynamics, totally absent from ther-
mostatics. It is usual to look at it as a function of two sets of
variables, the thermodynamic fluxes ��i� and forces �Fi�, de-
fined in such a way that this production can be expressed as

a sum of products of conjugates, �S˙ =�iFi�i, the fluxes be-
ing zero at equilibrium. This expression is supplemented by a
set of phenomenological relations which gives the fluxes as
functions of the forces, these relations being such that the
forces cancel at equilibrium. It is an experimental fact that
there exists a neighborhood of equilibrium where the rela-
tions between the two sets of variables are linear, that is,
�i=� jLijFj.

Onsager’s main result �2,3� is the symmetry of the phe-
nomenological coefficients Lij =Lji, proven on the basis of
two general hypothesis: regression of fluctuations and micro-
scopic dynamic reversibility. Systems under the effect of ex-
ternal magnetic fields or Coriolis forces are exceptions al-
ready known to Onsager and later treated by Casimir in Ref.
�4�. More recently, it has been shown that the second hypoth-
esis can be dropped for certain models �5�.

In the last decades, interest in nanoscopic systems has led
to placing them in the front line of science and technology.
Important research from the point of view of statistical me-
chanics has been done during the last decade, leading to such
notable results as the Jarzynski equality �6�, the Evans �7�,
and Crooks �8� fluctuation theorems, which have been ex-
perimentally verified �9�. A good overview of these topics

can be found in Ref. �10�. Nevertheless, since the seminal
work of Hill �11� in the early 60s, not much theoretical ef-
forts were dedicated to the strictly thermodynamic formalism
in the nanoscale up to the first years of the twenty first cen-
tury, when the same author revisited his own work and re-
named it as “nanothermodynamics” �12,13�. Hill generalized
the equations for open systems introducing a term associated
to the number of small systems in a macroscopic ensemble
of them that explicitly takes into account the energetic con-
tribution of surface and edge effects, system rotation, and
translation, etc., usually negligible for macroscopic systems.

In this context, it is of great importance to have a theoret-
ical framework for describing the operation of nanoma-
chines. Therefore, some thermodynamic results have been
tentatively extended to systems far from the thermodynamic
limit. Particularly, regarding the theory of nonequilibrium
fluctuations �of interest for the development of nanomotors�,
the validity of Onsager’s reciprocal relations is sometimes
taken for granted �14�. It is thus desirable to put the nonequi-
librium thermodynamics of small systems on firm theoretical
foundations. The formulation of such a nonequilibrium nano-
thermodynamics is the main aim in this Brief Report. By
analogy with Hill’s equilibrium theory, the number of nano-
systems in an ensemble, which can be modified by produc-
tion, destruction, and transport, is introduced as a macro-
scopic variable that survives in the nanoscopic description.

In order to study the thermostatics of a small system, Hill
�11� started with a large number N of them, so that the en-
semble itself was a system in the thermodynamic limit. The
author developed a theory suitable for measurement devices
that interact with many of the small systems in such a way
that the relevant thermodynamic quantities are not those of
an individual nanosystem, but their averages over a signifi-
cant number of them, which in a homogeneous system will
be equal to their average over all of the nanosystems. In
other words, if each nanosystem is described by a set of
extensive variables �X�����=1

� , and the state of the total system
is characterized by �Xt

�����=1
� � �N�, the quantities accessible

to measurement are �X̄���
ª

Xt
���

N
�

�=1

�

. The entropy of a nano-

system can likewise be defined as S=
St

N .
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The total system obeys the usual set of thermostatic rela-
tions, particularly the Gibbs and Euler equations in entropic
form, dSt=��y���dXt

���− �dN
T and St=��y���Xt

���− �N
T , with

y���
ª� �St

�Xt
��� �

X
t
�����,N

and �ª−T� �St

�N
�
X

t
���. Obviously, in the

description of the overall system � is simply the chemical
potential associated with the number of nanosystems. How-
ever, in the thermodynamics of small systems it is called the
subdivision potential, a variable with no analog in conven-
tional macroscopic thermodynamics.

To formulate the Euler equation for the nanosystems it is
enough to divide both terms in the Euler equation by N.
Taking into account that dS= 1

N �dSt−SdN�, the Gibbs equa-
tion can also be formulated and, subtracting the two equa-
tions for dS, an inhomogeneous pseudo-Gibbs-Duhem equa-
tion arises. Thus, the thermodynamic equations for the
average small system are

S = �
�

y���X̄��� −
�

T
, �1a�

dS = �
�

y���dX̄���, �1b�

− d� �

T
	 = − �

�

X̄���dy���. �1c�

Comparing Eqs. �1b� and �1a�, it becomes apparent that S
does not satisfy Euler’s theorem and thus it is not a homo-

geneous function of �X̄���� in the nanothermodynamic for-
malism. The thermostatics of a small system depends on its
environment through �. Thus, a small system has more de-
grees of freedom than its large counterpart. The additional
contribution to the entropy �or, equivalently, to the internal
energy� comes from the aforementioned interface, edge, ro-
tation, and translation effects, which must become negligible
as the size of the system is increased, if conventional ther-
modynamics is to be recovered.

Recently, Ben-Amotz and Honig �15� have used the

Jarzynski equality to give a general expression dS=

�W���t�

T
+kB ln
exp� −�W

kBT ��
��t�

for the entropy production of a system

under a time-dependent constraint ��t� in contact with a ther-
mostat at the �possibly also time-dependent� temperature T,
averaged over the processes compatible with that constrain
��W is the elementary work associated to a particular pro-
cess�. If it is assumed that this kind of operation amounts to
an average over the ensemble of nanosystems �a reasonable
hypothesis since N is large� it is possible, using Eq. �1�, to
give an expression for the change in � between times 0 and t0
during the process determined by ��t�, suitable for measure-
ment or simulation:

����t� = T�
�

�y���X����0
t0

− 
��t�

��W + kBT ln�exp�− �W

kBT
	�� . �2�

The central part of this report is devoted to the application
of Hill’s course of reasoning to a system out of equilibrium
in the thermodynamic branch �linear regime�. For simplicity,
only the case with two homogeneous macroscopic sub-
systems �A and B� will be considered. The results can be
readily generalized to an arbitrary number of partitions or
even to a continuous distribution, as long as large enough
macroscopic differential volumes are taken in order to assure
that they contain sufficient numbers of nanosystems. The
method used is valid as long as differential calculus can de-
scribe the changes in the variables of the nanosystems to a
good approximation �i.e., they are not too small�.

Suppose that the systems are separated by a diathermic,
permeable, and deformable wall and slightly out of equi-
librium with each other. With the total system A�B com-
pletely isolated, the total deformation variables �Xt

���=XAt
���

+XBt
�����=1

� are conserved. N=NA+NB, however, can vary
since it is perfectly conceivable that the nanosystems �e.g.
micelles� could split or merge even in a macroscopically iso-
lated system. Conservation of N would be a reasonable as-
sumption in two opposite limits: static nanosystems whose
dissociation energy is so high that interactions with their en-
vironment cannot split them, and highly dynamic nanosys-
tems which are continuously reorganizing, but in such a way
that the fluctuations in the total number of systems are small
compared to the average value. It is possible to choose the
time derivatives of all extensive thermodynamic variables
as fluxes. Expanding �St=St−St,eq=�SAt+�SBt to second
order in these coordinates,

�St = �
I��A,B�

�
�

�XIt
����yI

��� +
1

2�
�

�yI
���

�XIt
����XIt

���	
+ �

I��A,B�
�NI�−

�I

T
+ �

�

�yI
���

�NI
�XIt

���	
+

1

2 �
I��A,B�

�2SIt

�NI
2 ��NI�2, �3�

where �X denotes the deviation of X from its equilibrium
value and all the derivatives are evaluated at equilibrium.
Note that the bars have been dropped for notational simplic-
ity. This implies that yA

���=yB
��� for all � and �A�NA

=−�B�NB and, given the conservation of X���, it follows that
�XA

���=−�XB
���. Taking this into account and differentiating

the previous expression with respect to time,

�St
˙ = �

�
� �yA

���

�NA
�NA −

�yB
���

�NB
�NB

+ �
�
� �yA

���

�XAt
��� +

�yB
���

�XBt
���	�XAt

�����ẊAt
���

+ ��
�

�yA
���

�NA
�XAt

��� +
�2SAt

�NA
2 �NA	�ṄA

+ �− �
�

�yB
���

�NB
�XAt

��� +
�2SBt

�NB
2 �NA	�ṄB. �4�
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This expression has the form of a sum of products of fluxes
and forces, the terms inside square brackets being the forces
�F�����=1

� and F�N�. To translate this expression into the nano-
scopic language, the following equalities must be used:

�ẊIt
��� =

d��NIXI
����

dt
= NI�ẊIt

��� + �ṄIXIt
���, �5a�

�S˙ =
�S˙ t

N
− St

�ṄA + �ṄB

N2 , �5b�

�XIt
��� = NI�XI

��� + XI
����NI − �XI

����NI, �5c�

giving the result

�S˙ = �
�

F����ẊA
��� + FNA

�ṄA + FNB
�ṄB, �6a�

with

F���
ª Ft

���NA

N
, �6b�

FNA
ª

FNAt + �
�

Ft
���XA

���

N
−

St

N2 , �6c�

FNB
ª

FNBt

N
−

St

N2 , �6d�

which means that the entropy production of the average
small system can also be written as a sum of products of
fluxes and forces. As mentioned previously, there exists a
neighborhood of equilibrium in which a set of linear phe-
nomenological relations between these variables holds. By
means of Eqs. �5� and �6�, the macroscopic and nanoscopic
linear coefficients can be related,

Lt
���� =

NA

N
�NAL���� + XA

���L�NA��� +
XA

���

N
�NAL��NA�

+ XA
���L�NANA�� , �7a�

Lt
��NI� =

1

N
�NAL��NI� + XA

���L�NANI�� , �7b�

Lt
�NI�� =

1

N
�NAL�NI�� + XA

���L�NINA�� , �7c�

Lt
�NINJ� =

L�NINJ�

N
;I,J � �A,B� . �7d�

The macroscopic system satisfies Onsager’s reciprocity by
hypothesis, i.e., Lt

��NA�=Lt
�NA��. It is easy to see, starting with

the last equations of the previous block and progressively
back-substituting, that the nanoscopic coefficients are also
symmetric in this situation. These proportionality relations
ensure that the second law of thermodynamics is obeyed by

the average systems �although it can be transitorily violated
by a small system�, a topic also discussed in Ref. �15�.

The quantity St is indeterminate in one additive constant;
therefore, the component of the fluxes proportional to it, aris-
ing from the terms in Eqs. �6c� and �6d�, must be zero. This
last condition is equivalent to

L��NA� = − L��NB�, �8a�

L�NANA� = L�NBNB� = − L�NANB�. �8b�

These equalities allow for further interpretation of Eq. �7�
using the change of variables �NA ,NB�→ �N ,D�, with
DªNA−NB. The time derivative of N represents the cre-
ation of nanosystems per unit time, while at fixed N the time
derivative of D corresponds to the transport of small sys-
tems. The two possible causes of variation of �NA ,NB� are
thus decoupled by this change. Furthermore, application of
the Curie principle shows that variation of D can only be
coupled to vectorial fluxes such as those treated in this Brief
Report, while variation of N can be coupled with chemical
�scalar� processes. In particular, they cannot be coupled with
each other because of the different tensor rank of the forces
involved.

Equations �8� are equivalent to stating that L��N�=L��NA�,
L�DD�=L�NANA� and the rest of the phenomenological coeffi-
cients involving N or D are zero. Lt

�DD� is proportional, with
a factor 1

N , to its nanometric equivalent. The remaining co-
efficients are

Lt
�N�� =

Lt
�NA�� + Lt

�NB��

2
=

2N
N + D

L�N��, �9a�

Lt
��D� =

Lt
�NN�XA

���

N
. �9b�

The last equation can be used as a definition of L�NN� in the
particular case in which N is fixed. This result means that the
contribution of a flux of nanosystems to that of an extensive
variable XAt

��� is proportional to the amount XA
��� of that vari-

able that each nanosystem carries with it in its transit from A
to B, as expected.

The above results can be reproduced by an alternate
method closer to the well-known macroscopic proof. This
method rests on the hypothesis of regression of fluctuations,
which states that the reaction of the system to a small devia-
tion from equilibrium caused by an external force is the
same as if it was caused by a spontaneous fluctuation. More-
over, if �Z�����=1

�+1
ª �Xt

�����=1
� � �N�, dynamic reversibility can

be expressed as 
�Z����t��Z����t+	��= 
�Z����t+	��Z����t��,
which straightforwardly gives 
�Ż����Z����= 
�Z����Ż����.
Substituting here a linear development for a system in the
thermodynamic limit, analogous to that of previous sections,

�Ż���=��Lt
����z���, with z���

ª

�St

�Z��� , and using the fact that

Z���z����=−kB
���� �easy to prove for a macroscopic system,
see, for instance, Ref. �1��, the symmetry of the phenomeno-
logical matrix follows immediately. However, for the nano-
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system, the temporal evolution of the internal variables can-
not be related only to their deviations from equilibrium,
adopting instead the more general form �16�

�Ẋ��� = �
�

L���� �S

�X��� + f ����t� , �10�

where f ����t� represents a general force acting on the system.

From Eq. �5c�, �X���=
�Xt

���−Xt,eq
���

�N
N . Approximating 1

N � 1
Neq

and taking into account that derivatives at constant N are
equal for the macroscopic and average system, it follows

directly that 
�X��� �S
�X��� �=−

kB
����

N . Thus, temporal reversibil-
ity implies that

L���� − L���� = 
f ����X��� − f ����X���� . �11�

This result represents a general condition for Onsager’s sym-
metry to hold when evolution of the system is conditioned by
a general external force. In this particular case, as it has
previously been shown, the external forces f ��� are propor-
tional to �N through constants L��N�, which makes the right-
hand side of the previous equation trivially equal to zero,
thus proving the symmetry of the phenomenological subma-
trix involving only the internal coordinates. This second
method cannot prove anything about the coefficients involv-

ing N, an external variable. To show their symmetry it is still
necessary to relate them to their macroscopical counterparts.
This formulation, however, connects more easily with the
language of the fluctuation theorems.

New cross-transport phenomena associated with the new
degrees of freedom must appear in the nanosystems. As pre-
dicted by Eqs. �9�, if the number of small systems is kept
constant, these phenomena will consist simply in the ex-
change of extensive variables transported along with the
nanosystems. Dynamic nanosystems, such as micelles, could
be thus worthier of study. Since Hill’s equilibrium formalism
has already been applied �and successfully compared to ex-
perimental data� to nanostructures such as nanosolids and
nanowires �17�, they could also be good candidates to find
these cross phenomena, for instance, in electric or thermal
measurements.
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